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Abstract—Oil and gas companies consider transforming conventional cable-based seismic acquisition to wireless acquisition as a promising 

step for cost and weight reduction in reservoir exploration. Wireless seismic acquisition requires large number of wireless geophone (WG) sensors 

to be deployed in the field. The locations of the WG sensors must be known when processing the collected data. The application of direction of 

arrival (DOA) estimation helps in localizing WGs and improves received signal level through beam steering and interference avoidance. 

Conventional DOA algorithms require high computational complexity which renders them inefficient for real-time response. In this paper, deep 

neural network (DNN) is proposed for DOA estimation of WGs at wireless gateway node (WGN) under different channel conditions. The 

estimated angle and corresponding coordinates of WGNs are used in least square estimation (LSE) to estimate the position of the WGs. The 

simulation results depict reasonable estimation and position accuracy in real-time.  

 

Keywords— Deep neural network, DOA estimation, Least square location estimator, Wireless gateway node, Wireless geophone, 

Wireless seismic acquisition  

1  Introduction 

EISMIC acquisition is usually carried out by oil and gas, 

and mineral resources companies for reservoir 

identification. In seismic exploration, a seismic signal is 

generated from a localized seismic source, usually a vibroseis 

truck [1], [2]. The seismic signal is reflected by subsurface 

discontinuities in the Earth and measured by geophones. 

Conventional seismic surveys rely on cable-based systems for 

transmission of the measured signal from the geophone sensors 

to the storage/processing unit for further investigation. The 

massive increase in the number of geophone sensors from about 1,000 to 2,000 geophones per square kilometer leads to a great 

challenge in equipment weight, flexibility and cost [3]. Oil and 

gas companies foresee wireless transmission of the measured 

seismic signals to the storage/processing unit as a promising 

technology. While wireless systems offer an excellent 

alternative to cable, they come with the challenging task of 

achieving high data rates and synchronization over the 

deployed nodes across a widespread area [4], [5]. Real-time 

acquisition is of vital importance as it enables field engineers to 

adaptively modify the acquisition parameters and minimize 

logistical costs [4], [5]. Knowing the direction of arrival (DOA) 

of the transmitted signal and the position of the transmitter is 

paramount to geophysical and communication purposes [6], [7], 

 
 

[8].  

Different architectures for wireless seismic acquisition have 

been proposed for proper replacement of the conventional 

cable-based system [3], [9]–[14]. The authors in [9] introduced 

star topology with a single wireless gateway node (WGN) to 

coordinate 1024 wireless geophones (WGs). Reference [11] 

proposed 1,000 to 2,000 WGs with spacing of 5 𝑚 to 30 𝑚. 

The authors in [12] divided the whole area of acquisition into 

subnetworks, each subnetwork having ~200 to 300 WGs that 

are coordinated by a single WGN. For an orthogonal 

deployment, the spacing between WGs is 20 𝑚 to 40 𝑚 along 

the vertical lines and 0.5 𝑘𝑚 to 1 𝑘𝑚 along the horizontal lines. 

In [3] and [13], similar geometries were utilized as in [11] with 

addition of cluster heads to coordinate the leaf-nodes, i.e. WGs, 

and the survey area was extended beyond 30 𝑠𝑞 𝑘𝑚. An 

orthogonal geometry was used by [10] and [14], where 4,707 

WGs with 30 𝑚 interspacing were deployed in 22.5 𝑠𝑞 𝑘𝑚 

[10]. The authors in [14] used 30 receiver lines (𝑅𝐿𝑠) with 200 𝑚 interspacing, where 480 WGs were deployed along each 𝑅𝐿 with a spacing of 25 𝑚. This comprised a total of 14,400 

WGs in 72 𝑠𝑞 𝑘𝑚.  

Researchers have proposed various communication 

technologies for data transfer between the nodes. The authors 

in [9], [15], and [16] used Wi-Fi technology, while [3], [11], 

[12], and [13] proposed ultra-wide band technology due to its 
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support for high data rate and precise power emission. Other 

possible technologies include ZigBee, Bluetooth, multi-band 

orthogonal frequency division multiplexing (MB-OFDM), 

impulse-radio ultra-wide band (IR-UWB), in addition to mobile 

infrastructure for long range communication between the 

WGNs and the storage/processing unit. TV white space band 

(IEEE 802.11af standard) which ranges from 50 to 700 𝑀𝐻𝑧 

was also proposed for communication between the WGs and 

WGNs [14].  

Localization of WGs can be achieved by either using a global 

positioning system (GPS), or by using localization algorithms 

to estimate the positions of the WGs in GPS deprived 

environments. Received signal strength (RSS), time-of-arrival 

(TOA), time difference-of-arrival (TDOA), and DOA are 

among the candidate localization techniques. This paper 

focuses on DOA techniques. Recently, localization using 

sectorized antenna was proposed in [10]. The trends towards 

multiple input and multiple output systems (MIMO) suggest 

that beamforming and DOA techniques will be readily available 

in future systems. Various DOA algorithms have been proposed 

for localization. The Capon algorithm was initially applied to 

MIMO systems in [17]. The authors in [18] presented a 

comparative analysis of Beamforming, the Capon algorithm, 

MUSIC, and first-norm singular value decomposition (SVD) 

for two sources impinging on restricted antenna arrays.  

Deep neural networks (DNNs), a type of machine learning 

with multiple interconnected hidden layers has been applied in 

different fields like image processing, voice recognition, 

communications, etc [19], [20], [21]. The learning phase of 

DNNs involves extensive calculations but concedes low 

complexity and high resolution in estimation. Efforts have been 

made to integrate DNNs into direction finding. In [22], an 

artificial neural network was proposed for up to 4 sources, in 10° resolution, using a 5-element uniform linear array (ULA). 

A DNN for DOA of two sources with 1° resolution was 

proposed in [23] and [24]. In [25], DNNs were proposed for 

direction finding of unmanned aerial vehicles. Furthermore, the 

authors in [26] and [27] integrated DNNs with massive MIMO. 

In [28], a convolutional neural network based on supervised 

learning was used in DOA estimation of acoustic signals. 

The locations are important for processing collected seismic 

data, and ultimately obtaining the seismic images. Given two or 

more estimated DOAs with coordinates of the receiver, the 

location of the transmitter can be estimated using a least square 

estimation (LSE) [29], [30]. In [31], DOA estimation based 

DNN is proposed for wireless seismic survey. In this paper, 

DNN is proposed for DOA estimation of WGs at the WGN 

under different channel conditions. Particularly, the estimated 

angle and corresponding coordinates of WGNs are used to 

estimate the position of the WGs. The seismic acquisition area 

is divided into many uniform regular hexagonal cells. Each cell 

has one WGN at the center serving many WGs. The cell is 

further divided into three sectors, where a ULA with a given 

number of elements is used at the WGN to estimate the DOA 

of the signals received from each WG. It is assumed that one 

WG is active at a time in each sector. A DNN algorithm is 

proposed for DOA estimation of the received signal at each 

sector. The DOA is used to improve the communication quality 

to support high data rate capability. The estimated angle and 

corresponding coordinates of WGNs are used in an LSE [29], 

[30] to estimate the positions of the WGs. The mean absolute 

error (MAE) and the empirical cumulative distribution function 

(CDF) are used for localization error analysis. Simulation 

results depict reasonable estimation and position accuracy in 

real-time.  

The remainder of this paper is organized as follows. Section 

2 covers the proposed wireless seismic architecture, including 

sensor node distribution, channel model, and DOA estimation 

formulation for wireless seismic acquisition. Section 3 presents 

the DNN-based DOA estimation scheme. Section 4 introduces 

the LSE. Simulation and results are discussed in Section 5. 

Finally, Section 6 wraps up with concluding remarks. 

2 Wireless Seismic Architecture 

2.1 Sensor Node Distribution (Hexagonal cells) 

To decide on the wireless system architecture, knowledge 

about the topology of the WGs is needed. An orthogonal 

geometry was adopted in [14], where 𝑅𝐿𝑠 and source lines 

(𝑆𝐿𝑠) are perpendicular to each other, as shown in Fig. 1. The 

red sparks represent the seismic sources along the 𝑆𝐿, the black 

dots represent the WGs deployed along the 𝑅𝐿 with 

interspacing ∆𝑥, and triangles are the WGNs. The vertical 

spacing between the 𝑅𝐿𝑠 is ∆𝑦. Wireless coverage is provided 

to the whole acquisition field by dividing the area into 

hexagonal cells. Adjacent cells are assumed to be in a horizontal 

interval of 3𝑅, where 𝑅 is the cell radius. A group of WGs in a 

single cell are coordinated by a single WGN serving as the base 

station. The number of required cells 𝑁(𝑅), as a function of 𝑅, 

is given in [14] as 

 𝑁(𝑅) = {(2⌈𝑦𝑐⌉ + 1)⌊𝑥𝑐⌋ + ⌈𝑦𝑐⌉,   {𝑥𝑐} ≤ 1/3 (2⌈𝑦𝑐⌉ + 1)⌊𝑥𝑐⌋,              {𝑥𝑐} > 1/3   (1) 

 𝑦𝑐 = (𝑌−1)∆𝑦√3𝑅 ,     𝑥𝑐 = (𝑋−1)∆𝑥3𝑅  (2) 

where ⌈α⌉, ⌊α⌋ and {α} are ceiling, floor, and fractional part of α. 𝑌 is the number of 𝑅𝐿𝑠, 𝑋 is the number of WGs in a single 𝑅𝐿, ⌈𝑦c⌉ is the number cells along a single column of cells, and 2⌈𝑥𝑐⌉ is the number of cells along a single row of cells. In real 

life, obstructions in the environment introduce uncertainty to 

the exact locations of the WGs. This can be modeled as a 

uniformly random perturbed geometry with separation ranging 

from 0 to 2𝑚 in each coordinates [3].  

Sectorization is applied to each cell, where a directive ULA 

with 120𝑜 coverage is employed in every sector. This leads to 

three sectors at each WGN as shown in Fig. 2. Since directed 

antennas are used in each sector, the WG within a certain sector 

will be localized with better accuracy. Note that, the number of 

WGs and 𝑅𝐿 in Fig. 1 and Fig. 2 are not drawn to scale. 
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Fig. 1. Orthogonal geometry of wireless seismic architecture. 

 

Fig. 2. Single cell with 3 sectors. 

2.2 Channel Model 

Different environmental factors like free-space loss, 

scattering, reflection, refraction, or diffraction in the physical 

channel affect the quality of the signals transmitted from the 

WGs to the WGNs. To predict the effect of distance, obstacles 

and other environmental factors on the transmitted signals, 

reference [32] analyzed both log-distance and log-normal 

shadowing model for tall and short grassy land environments, 

while the authors in [33] and [34] performed experimental 

evaluation of path loss exponent in wireless sensor networks. 

The log-normal path loss, 𝑃𝐿(𝑑)𝑑𝐵 , determines the power loss 

on the transmitted signal as a function of distance and fading 

effect; expressed by [32] 

 𝑃𝐿(𝑑)𝑑𝐵 = 𝑃𝐿(𝑑0) + 10𝛾𝑙𝑜𝑔10 ( 𝑑𝑑0) + 𝑋𝜎 (3) 

where 𝑃𝐿(𝑑0) is the path loss at close reference distance 𝑑0 =1 𝑚, 𝑑 is the Euclidian distance between the WG and the WGN, 𝛾 is the path loss exponent and 𝑋𝜎 is a log-normal shadowing 

parameter which is Gaussian random variable with zero mean 

and variance 𝜎2. If the distance effect is considered alone in the 

path loss model, (3) is expressed without 𝑋𝜎. 

2.3 DOA Estimation Formulation in Wireless Seismic 

Model 

Consider the scenario where a single source i.e. WG transmits 

a narrow band signal 𝑔(𝑡), from a distance ≫ 2𝐷2/𝜆 (far field 

assumption) with wavelength 𝜆 and 𝐷 being the aperture size of 

the array. The transmitted signal is received by an 𝑀-element 

ULA at the WGN, as shown in Fig. 3. The inter-element spacing 

is Δ = 𝜆/2 and the incidence DOA of the received signal is 𝜃. 

The received signal at the array output, can be expressed as [18] 

 𝒙(𝑡) = 𝒖(𝜃)𝑔(𝑡) + 𝒏(𝑡), 𝑡 ∈ {1, 2, … , 𝑇} (4) 

where 𝒙(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑀(𝑡)]𝑇, 𝒏(𝑡) =[𝑛1(𝑡), 𝑛2(𝑡),… , 𝑛𝑀(𝑡)]𝑇 is the additive white Gaussian noise 

(AWGN) vector, [. ]𝑇 is the transpose operation, 𝑇 is the 

snapshots, and 𝒖(𝜃) is the steering vector defined as 𝒖(𝜃) = [1, 𝑒𝑗2𝜋Δ𝑠𝑖𝑛(𝜃)𝜆 , … , 𝑒𝑗2𝜋Δ(𝑀−1)𝑠𝑖𝑛(𝜃)𝜆 ]𝑇 (5) 

Since the signal and the noise are uncorrelated, the 𝑀 × 𝑀 

correlation matrix of the received signal can be written as  𝑹𝒙𝒙 = 𝐸[𝒙(𝑡)𝒙𝐻(𝑡)] = 𝒖(𝜃)𝜎𝑔𝑔2 𝒖𝐻(𝜃) + 𝜎𝑛2𝑰 (6) 

where 𝜎𝑔𝑔2 = 𝐸[𝑔(𝑡)𝑔𝐻(𝑡)] is the signal power, 𝜎𝑛2 is the 

common variance of the noise terms, 𝐸[∙] is the statistical 

expectation, and [∙]𝐻 is a Hermitian operator. The correlation 

matrix 𝑹𝒙𝒙 is used as an input to the DNN-based DOA 

algorithm for estimating DOA of the source.  

3 DNN-Based DOA Estimator 

This section describes the framework of the DNN and its 

application for DOA estimation of the received signals at the 

WGN(s). 

3.1 DNN Framework  

Fig. 4 shows a conventional single layer neural network with 𝐽 inputs and an output 𝑙. Each input 𝑞𝑗, for 𝑗 = 1,2, … , 𝐽, is 

multiplied with analogous weight, 𝑤𝑙,𝑗, and summed up with a 

constant bias 𝑏𝑙 to produce an output 𝑧𝑙, for 𝑙 = 1,2, … , 𝐿. An 

activation function 𝑓 is a transfer function that controls the 𝐽 
inputs and 𝑧𝑙 output of the network through mapping to predict 

the final output 𝑦𝑙 . The output, 𝑧𝑙, and the activation functions 

can be expressed respectively as [23]  

 𝑧𝑙 = ∑𝑤𝑙,𝑗𝑞𝑗 + 𝑏𝑙𝐽
𝑗=1  (7) 

 𝑓𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑧𝑙) = 11+𝑒−𝑧𝑙,   𝑓𝑅𝑒𝐿𝑢(𝑧𝑙) = max (0, 𝑧𝑙) (8) 

where 𝑓𝑠𝑖𝑔𝑚𝑜𝑖𝑑, 𝑓𝑅𝑒𝐿𝑢 are the Sigmoid and rectified linear 

activation functions. The output 𝑦𝑙 can be written as [23] 

 

Fig. 3. DOA estimation using ULA. 
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Fig. 4. Single layer neural network. 𝑦𝑙 = 𝑓(𝑧𝑙) = 𝑓 (∑𝑤𝑙,𝑗𝑞𝑗 + 𝑏𝑙𝐽
𝑗=1 ) = 𝑓 (∑𝑤𝑙,𝑗𝑞𝑗𝐽

𝑗=0 ) (9) 

where the 0𝑡ℎ input 𝑞0 = 1 is introduced to accommodate for 

matrix multiplication as in (11) and the equivalent weight is 𝑤𝑙,0 = 𝑏𝑙. It follows that (7) and (9) can be written in vector 

form as [23] 

 𝒚 = [𝑦1𝑦2⋮𝑦𝐿] = [𝑓(𝑧1)𝑓(𝑧2)⋮𝑓(𝑧𝐿)] = 𝑓(𝒛) (10) 

𝒛 = [𝑧1𝑧2⋮𝑧𝐿] = [  
 𝑤1,0 𝑤1,1 … 𝑤1,𝐽𝑤2,0 𝑤2,1 … 𝑤2,𝐽⋮𝑤𝐿,0 ⋮𝑤𝐿,1 ⋮… ⋮𝑤𝐿,𝐽]  

 [ 1𝑞1 ⋮𝑞𝐽 ] = 𝑾[1𝒒] (11) 

3.2 Application of DNN for DOA Estimation  

For DOA estimation using DNN, the 𝑀 × 𝑀 correlation 

matrix 𝑹𝒙𝒙 of the received signal is used as an input to the DNN. 

The covariance matrix 𝑹𝒙𝒙 is a Hermitian matrix in which the 

diagonal elements are real-valued while the upper and lower 

triangular parts are complex conjugates of each other. To avoid 

repetition, the diagonal elements and only the lower or upper 

entries of 𝑹𝒙𝒙 are used. The complex values are decomposed 

and presented as real values arranged in a row vector of length 𝑀2 as [23] 𝒒 = [𝑟1,1, 𝑟2,2, … , 𝑟𝑀,𝑀, ℜ(𝑟2,1), ℑ(𝑟2,1), … , ℑ(𝑟𝑀,𝑀−1)]𝑇 

  (12) 

where 𝑟𝑚,𝑛, ∀ 𝑚, 𝑛 = 1,… ,𝑀, are the entries of 𝑹𝒙𝒙 and ℜ(∙), ℑ(∙) are the real and imaginary entries.  

4 Least Square Location Estimation 

For a single WG signal, given two or more DOAs at different 

WGNs, and the corresponding locations of those WGNs, the 

location of the WG can be estimated using LSE [35], as 

described in Fig. 5. Let 𝜃𝑘 be the DOA of the WG to the 𝑘𝑡ℎ 

WGN located at (𝑋WGN𝑘 , 𝑌WGN𝑘). The position (𝑋WG, 𝑌WG) of 

the transmitter can be localized as 

 
cos𝜃𝑘sin 𝜃𝑘 = 𝑋WG−𝑋WGN𝑘𝑌WG−𝑌WGN𝑘 . (13) 

This can be expressed as  

 𝑋WG sin𝜃𝑘 − 𝑋WGN𝑘 sin𝜃𝑘 = 𝑌WG cos 𝜃𝑘 − 𝑌WGN𝑘 cos𝜃𝑘 (14) 

Equation (14) for 𝑘 = 1,2, … , 𝐾 can be written in matrix 

form as  

 

Fig. 5. Descriptive diagram of LSE. 

 𝑨𝒉 = 𝒗 (15) 

where 𝐾 is the number of WGNs used for estimating the WG 

located at 𝒉 = [𝑋WG, 𝑌WG]𝑇, and the other two variables are 

 𝑨 = [sin 𝜃1 −cos 𝜃1sin 𝜃2 −cos 𝜃2⋮sin 𝜃𝐾 ⋮−cos 𝜃𝐾], 

(16) 

 𝒗 = [  
 𝑋WGN1 sin 𝜃1 − 𝑌WGN1 cos 𝜃1𝑋WGN2 sin 𝜃2 − 𝑌WGN2 cos 𝜃2⋮𝑋WGN𝐾 sin 𝜃𝐾 − 𝑌WGN𝐾 cos 𝜃𝐾]  

 
 

Therefore, the LSE for the unknown location of the WG 

transmitter is expressed as 

 𝒉̂ = (𝑨𝑇𝑨)−1𝑨𝑇𝒗 (17) 

5 Simulation and Results 

In this section, the performance of the DNN as applied to the 

presented seismic model for DOA and position estimation 

algorithm are evaluated. The parameters used for WGs and 

WGNs deployment are listed in Table 1. Note that, these 

parameters are used for all evaluations unless otherwise stated. 

5.1 Simulation Environment 

The simulation parameters of the implemented DNN 

algorithm are presented in this section. A reference source i.e. 

WG is assumed to be transmitting a narrow band signal with 600 𝑀𝐻𝑧 carrier frequency. A 5-element ULA (𝑀 = 5) is 

used, where the inter-element spacing is 𝜆/2 and 𝑇 = 100 

snapshots. The diagonal and lower triangular elements of 

correlation matrix are decomposed into a column vector, 𝒒, of 𝑀2 = 25 entries. This vector is used as an input to the DNN.  

A feedforward neural network based on supervised learning 

algorithm trained with Levenberg Marquardt backpropagation 

algorithm (Trainlm) and gradient descent with momentum is 

used. Two hidden layers with a Sigmoid activation function and 

20 neurons per layer is adopted, where a linear activation 

function is used at the output layer. Each input data has a 

desired target (output) for generating a weight that minimizes 

the error between actual and estimated output. The training data 

is generated using different SNR scenarios as:  

a) Constant 0 𝑑𝐵 SNR 

b) Constant 5 𝑑𝐵 SNR 

c) Constant 30 𝑑𝐵 SNR 

d) 5 𝑑𝐵 linear steps from 0 𝑑𝐵 to 30 𝑑𝐵 

e) 1 𝑑𝐵 linear steps from 0 𝑑𝐵 to 30 𝑑𝐵 
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Table 1. Parameter for deployment of WG and WGN 

Parameter Values 

Number of 𝑅𝐿s 30 

Number of geophones per 𝑅𝐿 480 

Number of geophones per cell ~450 

Spacing between 𝑅𝐿s 200 𝑚 

Spacing between geophone in 𝑅𝐿 25 𝑚 

Cell radius, 𝑅 1 𝑘𝑚 

Number of WGNs 36 

Total number of geophones 14400 

Total area of acquisition 72 𝑠𝑞 𝑘𝑚 

 

The search range of the DOA at the output of DNN ranges 

from −60° to 60° in steps of 1° resolution, yielding a total of 𝑁𝜃 = 121 angles. A total of 1000 epochs are used to ensure 

convergence for validation/testing. While generating the 

training data, 300 Monte Carlo iterations are considered for 

each aforementioned SNR scenarios. This gives 36,300 train 

set for each constant case, 254,100 and 1,125,300 for 5-step 

and 1-step cases respectively. A total of 80% is used as training 

set and remaining 20% is used as validation set to avoid 

overfitting. For our tests, we used a PC with an Intel(R) 

Xeon(R) CPU E5-1620 v3 @ 3.5 GHz processor and 32 GB 

RAM. 

5.2 Performance Evaluation of the DNN in DOA 

The robustness of the proposed DNN algorithm is evaluated 

using root mean square error (RMSE) and the probability of 

estimating the correct DOA. The RMSE can be expressed as 

 RMSE = √ 1𝑁𝐼 ∑ ∑(𝜃𝑖(𝑛) − 𝜃̂𝑖(𝑛))𝐼
𝑖=1  2𝑁

𝑛=1  (18) 

where 𝑁 is the number of Monte Carlo iterations, 𝐼 is the 

number of WGs to be localized, 𝜃𝑖(𝑛)
, and 𝜃̂𝑖(𝑛)

 are the actual 

and estimated DOA at 𝑛𝑡ℎ test for 𝑖𝑡ℎ WG. If the estimated 

angle is within 0.5° from the original angle, correct estimation 

is considered.  

The probability of correct estimation and RMSE according 

to the aforementioned five SNR scenarios are presented in Fig. 

6 and Fig. 7, respectively, with description of the SNR used for 

the training phase in the legend and testing phase in the 

abscissa. In general, the DNN trained with wider range SNR 

outperforms its counterparts trained with constant SNR, 

meaning that DNN trained at a constant SNR has good 

performance at that specific SNR and then performs poorly for 

other SNR values. Both the DNN trained with 1 𝑑𝐵 and 5 𝑑𝐵 

step linear increased SNR have similar performance with 

RMSE of 0.3° at 0 𝑑𝐵. The probability of correct estimation is 87% at 0 𝑑𝐵 SNR then it saturates to 100% at 8 𝑑𝐵 SNR. 

There is minor advantage of 0.2 % in correct estimation when 

using 1 𝑑𝐵 step compared with 5 𝑑𝐵 step increase. Note that 

the best probability of correct estimation and the smallest 

RMSE are achieved at the trained SNR, beyond that the 

performances get worse due to the overfitting of the DNN. 

DNNs trained with a linear increased SNR achieve correct 

estimation at around 6 𝑑𝐵 SNR, while MUSIC algorithm 

requires ~4 𝑑𝐵 more, as illustrated in Fig. 6. On the other hand, 

the same DNNs realize lower RMSE at SNR < 9 𝑑𝐵 compared 

with MUSIC algorithm as shown in Fig. 7. Beyond that, 

MUSIC algorithm performs better. 

 

 
Fig. 6. Probability of correct DOA estimation for different training scenarios. 

 

Fig. 7. RMSE of DOA estimation for each SNR scenario. 

 
Table 2. Parameter for signal model 

Parameter Values 

Centre frequency, 𝑓𝑐 600 𝑀𝐻𝑧 

No. of Snapshot, 𝑇 100 

No. arrays element at each sector, 𝑀 5 

Spacing between arrays, Δ 𝜆/2 

Range covarage of arrays, 𝑁𝜃 121° (−60° to +60°) 

No. iteration, 𝑁 100 

Initial transmitted power 40 𝑑𝐵𝑚 

Closest reference distance, 𝑑0 1 𝑚 

Log-distance path loss exponent, 𝑛 2 

Log-normal variance, 𝜎2 0, 3, 5, 7  𝑑𝐵 
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5.3 DOA Estimation Using DNN in Seismic Acquisition 

In the previous subsection, the proposed DNN trained with a 1 step linear increase has a good performance in DOA 

estimations. This trained DNN is used in each sector of WGN 

for estimating the DOA of the received signals. The following 

discussion describes the effect of the channel model and the cell 

size on the estimation accuracy. The CDF of the MAE as a 

function of the position error is used to investigate the effect of 

path loss, where the position error is the Euclidian distance 

between the actual and the estimated position of the WGs. Then 

different shadowing effects were analyzed using the MAE and 

its empirical CDF as a function of the number of WGNs and 

position error, respectively. To investigate the effect of cell 

size, two different cell radii, 𝑅 = 1 𝑘𝑚 and 𝑅 = 0.8 𝑘𝑚, are 

examined in all cases. Note that, all parameters for generating 

the transmitted signal are given in Table 2. It is assumed that 

one WG is transmitting at a time and all WGs have equal 

transmitting power. The SNR of the received signal at the 

WGNs depends on path loss and the shadowing effects. 

Covariance matrices are formed from the received signal and 

applied to the DNN for DOA estimation. The results are then 

used for localization using the LSE.  

The estimated DOA and the corresponding coordinates of 

WGNs are used in the LSE for estimating the position of the 

transmitter, i.e. WG, where the number of WGNs is determined 

as per the quality of the received signals. In other words, two or 

more of the nearest WGNs are used for estimating the position 

of one WG at a time. Accounting for more WGNs in LSE 

affects the estimation accuracy because the farther WGNs 

receive signals with a lower SNR, and this may bias the 

estimated location of the WG. 

The MAE is defined as the mean of the Euclidian distance 

between the actual and the estimated position of the 

transmitting WG, which is given as MAE = 1𝑁𝐼 ∑ ∑√(𝑋WG𝑖 − 𝑋̂WG𝑖(𝑛) )2 + (𝑌WG𝑖 − 𝑌̂WG𝑖(𝑛) )2𝐼
𝑖=1

𝑁
𝑛=1  

  (19) 

where 𝑋̂WG𝑖(𝑛)
 and 𝑌̂WG𝑖(𝑛)

 are the estimated coordinates for the 𝑖𝑡ℎ 

WG at the 𝑛𝑡ℎ test. The localization based on DOA can be 

evaluated using different number of WGNs. We consider the 

strongest neighboring WGNs. Fig. 8 shows the empirical CDF 

of estimation accuracy as a function of the position error 

assessed using closest WGNs assuming no shadowing, 𝜎2 =0 𝑑𝐵. The localization accuracy increases with the number of 

WGNs because more WGNs are involved in the LSE. It also 

increases with reducing the cell radius, as the WGNs become 

closer to the WGs and consequently high SNR is realized at 

each WGN. For 𝑅 = 0.8 𝑘𝑚 (dotted lines), four WGNs realize 

an excellent localization accuracy that is ~96% within 1.5 𝑚 

of the actual position. In the same vein, the accuracy is reduced 

by 2% or more in all considered cases when the cell radius is 

increased to 𝑅 = 1 𝑘𝑚.  

Fig. 9 shows the MAE in localizing all WGs versus the 

number WGNs involved in localization. Different shadowing 

levels are considered. In general, the MAE decreases with the 

number of considered WGNs until a certain value (4 WGNs) 

followed by a higher value due to the increase in the number of 

WGNs receiving the signal with a low SNR. For example, when 𝑅 = 1 𝑘𝑚 and no shadowing i.e. 𝜎2 = 0 𝑑𝐵, 4.4 𝑚 MAE can 

be achieved using 2 WGNs. The accuracy increases to 0.6 𝑚 

using 4 WGNs, beyond which the performance deteriorates due 

to the aforementioned reason. Fig. 9 also shows that as the 

shadowing parameter, 𝜎2, increases, the localization accuracy 

decreases. When 𝑅 is reduced to 𝑅 = 0.8 𝑘𝑚, the MAE is 

further reduced.  

Based on Fig. 9, a total of 4 WGNs is selected and the 

positioning accuracy using the empirical CDF of the MAE for 

all deployed WGs is plotted in Fig. 10 for different shadowing 

levels. The accuracy degrades as the shadowing parameter 

increases. When 𝑅 = 1 𝑘𝑚 (solid lines), about 93.5% of the 

whole deployed WGs can be estimated within 1.5 𝑚 of the 

actual position when only path loss effect is considered. When 

the shadowing level increases to 𝜎2 = 7 𝑑𝐵 for the same cell 

size, about 65% of the whole deployed WGs is localized within 1.5 𝑚 of the actual position. When the cell size is reduced, 

around 91% of the whole deployed WGs can be estimated 

within 1.5 𝑚 of the actual position with shadowing level of 𝜎2 = 3 𝑑𝐵.   

 
Fig. 8. Empirical CDF of localization error, evaluated using different cell radius 
and different number of WGNs. 

 

Fig. 9. Mean absolute error. 
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Fig. 10. Empirical CDF of localization error, evaluated using 4 WGNs, different 

cell radius and 𝜎2 = 0, 3, 5, 7 𝑑𝐵. 

6 Conclusion  

This paper presented an orthogonal geometry of the wireless 

seismic model. The acquisition field was divided into 

hexagonal cells and each cell has a single WGN with three 

sectors. Also, a DOA estimation scheme was introduced based 

on DNN and its basic performance was tested using different 

SNR scenarios in the presence of one narrowband source. 

Simulation results show that a DNN trained with 1 𝑑𝐵 step 

SNR scenario achieves high DOA estimation accuracy. 

Moreover, the DNN DOA estimator was used in each sector of 

the WGN to estimate the DOA of the received signal. The 

estimated DOA and the corresponding coordinates of WGNs 

are used in LSE to estimate the position of the WGs. The result 

of position estimation depicts high estimation accuracy with the 

four closest WGNs. The estimation accuracy deteriorates as the 

shadowing effect increases and cell size increases. The results 

show that about 93.5% of the whole deployed WGs can be 

estimated within 1.5 𝑚 of the actual position when only path 

loss effect is considered. When the shadowing level increases 

to 𝜎2 = 7 𝑑𝐵, about 65% of the whole deployed WGs is 

localized within 1.5 𝑚 of the actual position for the same cell 

size, 𝑅 = 1 𝑘𝑚.  
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