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Abstract—In applications such as seismic acquisition, the
position information of sensor nodes, that are deployed in a linear
topology, is desired with sub-meter accuracy in the presence
of a limited number of anchor nodes. This can be achieved
with antenna arrays via mm-wave cooperative localization, whose
performance limits are derived in this letter. The number of
anchor nodes is seen to have a stronger impact than the number
of antenna elements in the anchor nodes. Succinct closed-form
expressions for the position error bound are also obtained
for 1-hop and 2-hop cooperative localization, where sub-meter
accuracy is perceived over several hundred nodes.

Index Terms—seismic measurements, millimeter wave, beam-
forming, cooperative localization.

I. INTRODUCTION

In seismic acquisition for oil and gas exploration, thousands
of sensor nodes, called geophones, are deployed linearly along
Receiver Lines (RLs) across areas of up to 100 km2 [1], [2].
Seismic waves are recorded by the geophones to generate
an image of the subsurface layers of the Earth. Location
information of the geophones is of primary importance, since
inaccurate positioning can lead to a degradation of the image
quality. Hence, an accuracy of at least 1 m is typically de-
sired [3]. Although global positioning system (GPS) modules
can provide this level of accuracy, their positioning capability
may be unreliable in certain regions. By incorporating lo-
calization schemes into the communication system, the need
for several thousands of GPS modules can altogether be
eliminated, thereby reducing the overall cost.

The subject of cooperative localization has been compre-
hensively analyzed in [4]–[6]. Additional generalizations have
been provided in [6] for the use of antenna arrays. A Cramér-
Rao bound (CRB) analysis on the location accuracy has been
studied in [7] for sensor networks based on time-of-arrival
(TOA) measurements. With regards to a linear geophone net-
work, the CRB on the positioning accuracy in ultra-wideband
(UWB) systems has been analyzed in [8].
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V. A. Reddy and G. L. Stüber are with the School of Electrical and
Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332,
USA (e-mail: varun.reddy@gatech.edu; stuber@ece.gatech.edu).

A. Bazzi is with CEVA, Les Bureaux Green Side 5, Bat 6, 400 Avenue
Roumanille, 06410 Biot, France (e-mail: ahmad.bazzi@ceva-dsp.com).

S. Al-Dharrab, W. Mesbah, and A. H. Muqaibel are with the Electrical
Engineering Department, King Fahd University of Petroleum and Miner-
als, Dhahran 31261, Saudi Arabia (e-mail: suhaild@kfupm.edu.sa; mes-
bahw@gmail.com; muqaibel@kfupm.edu.sa).

Recently, there has been a shift towards high-density seismic
acquisition, leading to Gigabit rate requirements for data trans-
fer. Hence, mm-wave communication with the IEEE 802.11ad
standard has been proposed for real-time data delivery [9].
Such a network architecture can be augmented with a mm-
wave cooperative localization scheme. This letter extends the
model in [10] for single-anchor localization using classical
beamforming with antenna arrays to the cooperative scenario,
followed by a generalized derivation of the fundamental per-
formance limits. With high path loss mm-wave propagation,
cooperation between nodes typically will not exceed two hops.
Closed-form analytical expressions are derived for the CRB
and the worst-case position error bound (PEB) in the case
of 1-hop and 2-hop cooperation in linear topologies. Such
expressions can prove to be computationally advantageous in
topologies comprising a large number of nodes.

II. SYSTEM MODEL

Consider an RL comprising G + W geophones along the
x-axis, with the gth geophone having an unknown location
pg = [xg, yg, zg]

T ∈ R3, 1 ≤ g ≤ G. There are W anchor geo-
phones with known locations pg, G+1 ≤ g ≤ G+W , that are
uniformly positioned along the RL, as shown in Fig. 1. Each
geophone is equipped with a uniform planar antenna array of
known orientation, having Ng number of antenna elements.
The orientation of the antenna array at the gth geophone is
modelled by the rotation matrices Rz(ϕg) (counter-clockwise
rotation about the z-axis), Ry(ϑg) (clockwise rotation about
the y-axis), and Rx(Φg) (clockwise rotation about the x-axis).
As shown in Fig. 1, given that the array is initially aligned
vertically and lying in the yz-plane, and the position of the ith

antenna element is denoted by p
(i′)
g , then its position p

(i)
g after

rotation is given by Rz(ϕg)Ry(ϑg)Rx(Φg)p
(i′)
g . The centroid

of the array is located at pg .
Pairwise measurements are performed between all geo-

phones, as per the maximum transmission range (denoted by
Rmax), and subsequently transferred to a central processing
node. As employed in [10], a direct localization scheme is
applied at the central node where the position information
is estimated directly from all the received signals [11] with
parameters such as the array response and the TOA being
implicitly used. Estimation of the orientation of the antenna
arrays is not considered, as this information is irrelevant to
seismic acquisition.
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Fig. 1: A linear topology of geophones along the x-axis with
G = 6, W = 3, and Ng = 25.

Let the transmit signal from an antenna element in the gth

geophone be denoted as sg(t).

sg(t) =
√
E/Ng <{p(t)ej2πfct} (1)

where E is the total transmit energy, Ng is the number of
antenna elements, fc is the carrier frequency, and p(t) is
a unitary pulse-shaping signal whose corresponding Fourier
transform is denoted by P (f). In this model, it is assumed that
all geophones have coarsely identified virtual antenna sectors
by performing pairwise beamforming protocols. For instance,
this is achieved through the sector-level sweep in the IEEE
802.11ad standard. Given that the signal bandwidth B � fc,
classical beamforming can be achieved through phased arrays
and the transmit beamforming vector fg at the gth geophone
is expressed as

fg = [ω1 ω2 · · · ωNg ]T (2)

ωi = exp
{
j2πfcτ

(i)
g (θ(s)

g )
}

, τ (i)
g (θ(s)

g ) =
d(θ

(s)
g )p

(i)
g

c
(3)

Considering spherical coordinates, define θ = [θ,φ]T and
d(θ)=[sin(θ)cos(φ),sin(θ)sin(φ),cos(θ)] to be the direction
cosine vector. The intended steering angle is denoted by θ(s)

g .
Let the vector of signals (in the frequency domain) received

by all the antenna elements in the hth geophone, correspond-
ing to the transmitted signals from the gth geophone, be
denoted as rh,g(f) ∈ CNh×1.

rh,g(f) = xh,g(f) + nh,g(f) (4)

xh,g(f) =
√
E/Ng P (f) ar

h(f)ah,g(f)At
g(f)fg (5)

where xh,g(f) denotes the vector of the desired received sig-
nals and nh,g(f) is a noise vector with nh,g(t) being modelled
as a circularly-symmetric Gaussian random variable with zero
mean and variance N0, to capture thermal background effects
in the receiver. The terms arh(f) and At

g(f) denote the receive
and transmit array frequency response matrices respectively,
and ah,g(f) is the channel frequency response vector.

arh(f) = [exp(j2π(f + fc)τ
(m)
h (θh))]Tm=1,2,...,Nh

(6)

At
g(f) = diag{exp(−j2π(f + fc)τ

(i)
g (θh))}i=1,2,...,Ng (7)

ah,g(f) = ah,g exp(−j2π(f + fc)τh,g)I1×Ng
(8)

τh,g = ‖ph − pg‖ /c (9)

where θh is the angle-of-arrival (AOA) with respect to the
centroids of both the arrays, and I1×Ng is the vector of all
ones with dimension Ng . The terms ah,g and τh,g represent
the amplitude and the propagation delay of the channel be-
tween the hth and gth geophones respectively. Given that

∆ � Ag, ∀g, where Ag is the antenna aperture of the gth

geophone, ah,g ≈ a [10].

III. POSITION ERROR BOUND

In this section, an expression for the position error bound of
the gth geophone is derived. Let ψ = [pT

1 pT
2 · · · pT

G a]T be
defined as the vector of unknown parameters in the network.
The indicator function I(g, h) represents the feasibility of a
link between the gth and hth geophones.

I(g, h) =

{
1 , |g − h|∆ ≤ Rmax

0 , |g − h|∆ > Rmax
(10)

where ∆ is the distance between adjacent geophones.
For all g, h, let rh,g(f) and xh,g(f) be grouped into the

vectors r(f) and x(f) respectively. The performance of any
unbiased estimator ψ̂ = ψ̂(r(f)) is bounded by the Cramér-
Rao bound (CRB) [12].

Er|ψ

{[
ψ̂ −ψ

] [
ψ̂ −ψ

]T
}
� J−1

ψ = CRB(ψ) (11)

Jψ , −Er|ψ
{
∇2
ψψ ln f(r|ψ)

}
(12)

where Jψ is the Fisher Information Matrix (FIM) and ∇ψ =
∂/∂ψ. The following analysis is undertaken for the case where
a-priori position knowledge is unavailable. Considering all the
measurements to be statistically independent from one another,
the log-likelihood function, ln f(r|ψ), may be rewritten in
terms of the function σ(•) that serves as a shorthand for the
summations in (14), where αg,h , I(g, h) ln f(rh,g|ψ) and

ln f(r|ψ) = σ(αg,h) (13)

=

G∑
g=1

G+W∑
h=1
h6=g

(αg,h)

︸ ︷︷ ︸
Measurements arising from

geophone transmissions

+

G+W∑
g=G+1

G∑
h=1

(αg,h)︸ ︷︷ ︸
Measurements arising from

anchor geophone transmissions

(14)

where ln f(rh,g|ψ) is the log-likelihood ratio of rh,g as
obtained from the Karhunen-Loève expansion of rh,g(f) con-
ditioned on ψ [5].

ln f(rh,g|ψ) =
2

N0

∫
B

xH
h,g(f)rh,g(f)df − 1

N0

∫
B

‖xh,g(f)‖2 df
(15)

The FIM Jψ in (12) can be expressed as

Jψ =


Jψ1,ψ1

· · · Jψ1,ψG
Jψ1,a

... Jψu,ψv

...
...

JψG,ψ1
· · · JψG,ψG

JψG,a

Ja,ψ1
· · · Ja,ψG

Jaa

 (16)

where the notation Jψu,ψv
(ψu being the uth element of

ψ, u, v = 1, 2, ..., G+ 1) is defined as

Jψu,ψv
, −Er|ψ

{
∇2
ψuψv

ln f(r|ψ)
}

(17)

For a given geophone, the measurements at each of the
receiving antenna elements are independent [10]. Substituting
for rh,g(f) in (14) from (4), and considering Er{nh,g(f)} =
0 ∀g, h, the expression in (17) can be expanded as

Jψu,ψv
= σ

(
J

(h,g)
ψu,ψv

)
(18)
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J
(h,g)
ψu,ψv

=
2 I(g, h)

N0

Nh∑
m=1

∫
B

<
{
∂X∗h,g,m(f)

∂ψu

∂Xh,g,m(f)

∂ψv

}
df

(19)

where Xh,g,m(f) is the mth element of the vector xh,g(f).
Following the analysis technique in [5], [6],

Jψu,ψv
=



G+W∑
g=1
g 6=u

(
J

(u,g)
ψu,ψu

+ J
(g,u)
ψu,ψu

)
, u = v; 1 ≤ u, v ≤ G

−
(
J

(u,v)
ψu,ψu

+ J
(v,u)
ψu,ψu

)
, u 6= v; 1 ≤ u, v ≤ G

0 , 1 ≤ u ≤ G, v = G+ 1

0 , 1 ≤ v ≤ G, u = G+ 1

Jaa , u = v = G+ 1
(20)

The entries of the matrix Jψu,ψv
are derived in Appendix A,

where it is seen that rotation about the x-axis does not impact
the nature of the FIM for a topology along the x-axis, an
observation that was also made in [10]. Additionally, chan-
nel reciprocity does not itself imply equivalent bidirectional
measurements between any two geophones, since the array
orientation and the number of antenna elements at the transmit
and receive sides can differ. The PEB of the gth geophone,
denoted by PEBg , can be computed from the gth (3 × 3)
submatrix occuring along the diagonal of CRB(ψ).

PEBg =
√

tr {[CRB(ψ)]g,g} =
√

tr{[J−1
ψ ]g,g} (21)

IV. SPECIAL CASES

In this section, closed-form analytical expressions for the
maximum position error bound are derived for a linear topol-
ogy in two specific scenarios: R = ∆ and R = 2∆. Consider
a total of G geophones with W = 2, and Ng = N,ϑg =
ϑ′, ϕg = ϕ′, ∀g, such that symmetric measurements are
obtained between any pair of geophones. In particular, the
PEB of the (G/2)th geophone lying at the center of the
topology is derived, as it perceives the worst-case localization
performance. For simplicity, assume that G is an even value1.

A. One-hop Cooperation

When R = ∆, measurements are made by a geophone only
up to one hop away, resulting in a total of two measurements
for each geophone. Under these conditions, Jψ takes the form
of a direct sum (denoted by ⊕) of a Toeplitz tridiagonal
symmetric block matrix (denoted by tri{•, •}) and Jaa.

Jψ = tri{JA,JB} ⊕ Jaa (22)

JA = 4× diag{Jxx,Jyy,Jzz} , JB = −(1/2)× JA (23)

where the FIM elements Jxx,Jyy,Jzz are the entries of the
matrix in (41) when (g − h) = ±1. Since the inverse of
tri{JA,JB} is sufficient to obtain an expression for the CRB
submatrix for the (G/2)th geophone (denoted by CG/2), the

1When G is even, the (G/2)th and (G/2 + 1)th geophones have equal
and maximum position error. When G is odd, the ((G+ 1)/2)th geophone
has maximum position error.

mathematical technique in [13] is utilized to compute the
inverse of a tridiagonal Toeplitz block matrix.

CG/2 =
(
JA −XG/2 −YG/2

)−1 (24)

XG/2 =

(
03 JB

−JB JBJA

)G/2

⊗ 06 (25)

YG/2 =

(
03 JB

−JB JBJA

)G/2−1

⊗ 06 (26)

where ⊗ denotes the matrix Möbius transformation and 0n
denotes the zero matrix of dimension n × n. Solving (24)-
(26), a closed-form expression2 for CG/2 is obtained as

CG/2 =
G(G+ 2)

2(G+ 1)
× J−1

A (27)

PEBG/2 =
√

tr
{
CG/2

}
(28)

Hence, the value of PEBG/2 is essentially given by the single-
hop parameters Jxx,Jyy,Jzz that are scaled by a factor which
grows exponentially with G.

B. Two-hop Cooperation

When R = 2∆, measurements are made by a geophone up
to two hops away. The FIM Jψ is obtained as the direct sum
of a pentadiagonal matrix and Jaa. A first simplification is
performed by expressing the pentadiagonal matrix as a product
of two Toeplitz tridiagonal matrices [14].

Jψ = {(2JB) ∗ (T1 ×T2)} ⊕ Jaa (29)

T1,T2 = tri{(2JB)−1(JA ± (JA + 4JB)), I3} (30)

JA = −diag{Jxx,Jyy,Jzz},JB = diag{4d, d, d} × JA (31)

d = L−2∆
0 /(2∆)4 × (L−∆

0 /(∆)4)−1 = L−∆
0 /16 (32)

where X∗Y denotes a blockwise product of X and each of the
sub-blocks of Y, and d denotes the ratio of the FIM element
Jyy in the 2-hop case to the 1-hop case, assuming that the
path loss arises from free-space propagation and atmospheric
absorption. The atmospheric absorption loss is expressed as
L−∆

0 , where L0 = 100.0017 at fc = 60 GHz [9].
An approximation is made by considering only the product

of the (G/2)th submatrices of the inverse of each of the tridi-
agonal matrices, since this product is the dominant contributor
to the value of CG/2.

PEBG/2 =
√

tr
{
CG/2

}
(33)

CG/2 ≈
[
T−1

2

]
G/2,G/2

×
[
T−1

1

]
G/2,G/2

× (2JB)−1 (34)

=
G(G+ 2)

2(G+ 1)
× (2JB)−1× (35)

diag{p(1/(4d) + 2), p(1/d+ 2), p(1/d+ 2)} (36)

p(d1) =

(
r2
1 − r2

2

s1r3

)(
s2

1

s2

)G/2−1

(37)

2In general, the CRB submatrix for the geophone at the center of the
topology is given by {2(G+ 1)2 − 1 + (−1)G+1}/{4(G+ 1)} × J−1

A .
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s1 =
1

2

(
d1 +

√
d2

1 − 4

)
, s2 = d1s1 − 1 (38)

r2, r1 = ±
(d1 − 1)

(
4 d1 − (d2

1 − 2)
√
d2

1 − 4− d3
1

)
4 (d2

1 − 4) d1
(39)

r3 =
1

2

(
d2

1 −
3 d1 − d3

1√
d2

1 − 4
− 1

)
(40)

The above expressions reveal that the value of PEBG/2 grows
exponentially with G, as observed in the case of 1-hop coop-
eration. However, the rate of growth is decreased as a function
of d, thereby improving the overall localization performance.

V. PERFORMANCE EVALUATION

Consider a linear topology of geophones, operated by the
IEEE 802.11ad standard, with ∆ = 25 m along the x-axis. As
per the standard, fc = 60 GHz, B = 2.16 GHz, and p(t) is a
root raised-cosine pulse with roll-off factor = 0.6. The transmit
power, noise figure, and system temperature are considered to
be 20 dBm, 4 dB, and 300 K respectively.

The variation of PEBg as a function of g is shown in Fig. 2a
for G = 160 and W = 4 under free-space propagation,
where the value of PEBg is averaged over 1000 Monte Carlo
trials. In each trial, ϑg and ϕg are randomly drawn from a
uniform distribution in the interval [0, 2π) (marked by dashed
lines). The anchor geophones have been marked by an ‘×’. In
comparison, the PEB can be reduced by 35-40% when vertical
orientation is imposed i.e. ϑg = ϕg = 0, ∀g (marked by
solid lines). The number of antenna elements in the anchor
geophones is increased to 100 in Fig. 2b, where a marginal
improvement in the localization performance is observed,
suggesting that the number of anchor geophones has a stronger
impact than the number of antenna elements in the anchor
geophones. It can also be observed that an increase in the
value of Rmax provides diminishing returns on the PEB, due
to the fact that the path loss is more acute at larger distances.

With respect to seismic acquisition, a performance compar-
ison between the proposed bounds (Ng = N, ∀g) and those
given in [8] is made for B = 2.16 GHz and W = 4. In [8],
an ultra-wideband (UWB) TOA-based cooperative localization
scheme3 is employed with single antennas. The value of fc is
set to 4 GHz in the case of [8] (within the designated spectrum
for UWB systems). The value of Ptx is set to −8 dBm in both
cases since UWB systems are limited by a maximum power
spectral density of −41.3 dBm/MHz. The two-ray propagation
model is considered in both scenarios, since low antenna
heights of 0.1-0.2 m are typically perceived in geophone
networks for logistical purposes and to counter the effect
of high wind speeds [9]. Hence, the PEB is averaged over
1000 Monte Carlo iterations, with the antenna heights and the
orientation angles being uniformly distributed in the intervals
[0.1 m, 0.2 m] and [0, 2π) respectively. Since the analysis
in [8] caters to only a 1-D localization problem, a comparison
between the bounds on the x-coordinate is presented in Fig. 2c.

3For a given TOA-based range measurement, the position accu-
racy is bounded by c/(2

√
2πβ
√

SNR), where SNR is the signal-
to-noise ratio and β is the effective bandwidth [5] defined as√∫∞
−∞ f2|P (f)|2df/

∫∞
−∞ |P (f)|2df .

For the single-antenna case (N=1), the PEB is slightly larger
when fc = 60 GHz, as compared to when fc = 4 GHz, due
to a marginally lower SNR for the given range of antenna
heights. For fairness of comparison, the system in [8] is also
analyzed for the use of antenna arrays with N = 25 and it is
observed that the PEB is lower in the case of fc = 60 GHz.
As compared to the PEB in [8], the bound given by (21) is
reduced in proportion to (

√
1 + f2

c /β
2) × (N), wherein the

first term arises from additional AOA information provided
by the antenna array [6] and the second term arises from
the beamforming gain. Additionally, a much higher value for
Ptx is permissible in IEEE 802.11ad systems, that can further
reduce the PEB.

Considering the two-ray propagation model, the maximum
values for G are listed in Fig. 2d such that the value of
PEBG/2 (for all three coordinates) does not exceed 1 m. As
compared to the case with vertically oriented antenna arrays,
the maximum value of G that can be supported in the case with
averaged orientation is decreased by 70-75% for Rmax = ∆,
and by 60-65% for Rmax = 2∆. Nevertheless, the proposed
bounds imply that sub-meter positioning accuracies can be
attained in a highly scalable manner.

With reference to the analysis in Section IV, the closed-
form expression for PEBG/2 given by (28) is used to quickly
compute the upper bound on the value of G in Fig. 2e
for ϑ′ = ϕ′ = 0. This performance is further enhanced
in the scenario of 2-hop cooperation in Fig. 2f, where the
approximation formula for PEBG/2 in (33) is shown to be
very close to the true value given by (21).

VI. CONCLUSION

In this study, fundamental performance limits have been
derived for cooperative mm-wave localization using classical
beamforming. The impact of the number of antenna elements,
the number of anchor nodes, and the array orientation has been
analyzed. Motivated by the fact that cooperation beyond two
hops is difficult to achieve under the constraints of mm-wave
propagation, closed-form expressions for the maximum PEB
in one-hop and two-hop cooperation have been derived. With
regards to seismic acquisition, the proposed bounds imply
high scalability, with just four anchor nodes yielding sub-
meter values for the PEB across 450-1500 nodes (spanning 11-
37 km) when all the antenna arrays are vertically oriented, and
across 100-500 nodes (spanning 2-12 km) when a statistical
average is taken over the antenna arrays’ orientations.

APPENDIX A

For 1 ≤ u, v ≤ G, the matrix J
(h,g)
ψu,ψu

= J
(h,g)
pu,pu

in (20) is
non-zero only when u = h or u = g. An expression is derived
in (41) by applying the analysis technique described in [10]
to a linear topology of geophones placed along the x-axis
(θg = [π/2, 0]T, g = 1, 2, ..., G+W ), where Ah = (Nhλ

2/4)
and γ(h,g) is the perceived signal-to-noise ratio (SNR) between
the hth and gth geophones. For 1 ≤ u ≤ G, v = G+ 1,

Jψu,ψv
=

G+W∑
g=1
g 6=u

J(g,u)
pu,a + J(u,g)

pu,a =

G+W∑
g=1
g 6=u

J(g,u)
pu,a + (−J(g,u)

pu,a ) = 0
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(a) Variation of PEBg , with all geophones
having 25 antenna elements.
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(e) The maximum value of G that can be ac-
commodated in the case of 1-hop cooperation.
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(f) Comparison between the true and approxi-
mate values of PEBG/2 in the case of two-hop
cooperation.

Fig. 2: Performance evaluation of the proposed bounds with respect to various parameters such as G, W , Rmax, Ng , and the
antenna array orientations at the geophones.
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